Design of a reconfigurable autoencoder neural network for detector front-end ASICs

CPAD 2021 – March 19, 2021

Columbia University : Giuseppe Di Guglielmo, Luca Carloni

Fermilab: Farah Fahim, Cristian Gingu, Christian Herwig, Jim Hirschauer,

Martin Kwok, Nhan Tran

Florida Tech : Danny Noonan

Northwestern University: Manuel Valentin, Yingyi Luo, Seda Memik

With thanks to the CMS Collaboration, and in particular, the CMS High-Granularity Calorimeter Group

Thanks also to

FAST MACHINE LEARNING LAB

https://fastmachinelearning.org/

2020 Fast ML for Science workshop:

https://indico.cern.ch/event/924283/

Please join the next workshop: tentatively end-of-2021 / early-2022

Motivation and introduction

- Higher luminosity → higher occupancy → higher detector granularity → higher data rates
- Data challenge for trigger path most severe → 40 MHz at HL-LHC
- Traditionally, on-detector electronics are kept as simple as possible.
- Data challenge → complex data processing must move to on-detector electronics
 - object reconstruction (tracks, jets), object selection, data compression

- This talk: Neural Network (NN) autoencoder in ASIC for on-detector data compression.
- Design based on requirements for the CMS High-Granularity Calorimeter (HGCAL).
- Key features of design :
 - low power, low latency, radiation tolerant (200 Mrad, 1×10^7 20MeV-hadrons/cm²/s)
 - Fully re-configurable.
 - customize the compression algorithm based on location within the detector
 - adapt the compression algorithm for changing detector and beam conditions

HL-LHC Data Challenge

Configurable on-detector data compression with machine learning

Autoencoder concept

CMS High Granularity Calorimeter (HGCAL)

- "Imaging calorimeter" with ~6M readout channels.
- 50 layers of active material + absorber.
 - Front layers tiled with 300-500 8" hexagonal silicon modules.
- **HGCROC ASIC**: digitizes charge and arrival time and provides charge data for trigger path.
- ECON ASIC selects/compresses digital trigger data for transmission off-detector.
 - NN Encoder to be included in ECON.

HGCAL trigger data challenge

Trigger path stage	Number channels	bits/ channel	Average Compression factor	Data rate*	# links* (10.24 Gbps)
Raw data	6M	20	1	5 Pb/s	1M
Hardware reduction	1M	7	1	300 Tb/s	60k
Threshold selection	1M	7	7	40 Tb/s	9k

^{*} Assumes 40 MHz rate and 50% link packing efficiency

• Baseline HGCAL design for trigger selection in ECON: threshold algorithm in ECON selects trigger cells with charge exceeding a threshold.

HGCAL 8" hex module

432 silicon sensors → 48 trigger cells (TC) @ 7b per TC

Traditional threshold algorithm: 3 of 48 TC readout for most of detector (2 \times 1.28G elink per module)

Encoder design considerations

- Minimize: power (< 100 mW) + area (< 4 mm²) + latency (< 100 ns)
- Maximize: physics performance + configurability + radiation tolerance
- Network architecture and precision of weights and biases: fixed in design
- Fully re-configurable: all network weights and biases + dimensionality of output

Encoder NN design considerations

Encoder NN components

- Convolutional layer (conv2D): extract geometric features
- Flatten layer: vectorizes 2D image from conv2D ($128 = 8 \times 4 \times 4$)
- Dense layer: decide which geometric features are important
- ReLU: activation function

Encoder NN

Encoder NN architecture optimization

• Optimize encoder network architecture choices including :

Performance metric: EMD

- Judge network performance according to image similarity.
- Energy Mover's Distance: quantify the cost of transforming one image into another as energy × distance.
- For each NN variation: train network and evaluate with simulated physics events including top quarks (jets, leptons) and 200 pileup.

arXiv:1902.02346

Komiske, Metodiev, Thaler

Physics driven hardware co-design

Rapid prototyping and optimization of network achieved through

- QKeras: network development with quantization-aware training and physics simulation
- hls4ml: neural network description (h5 file e.g.) → HLS-compliant C++ format
- Catapult HLS : C++ → RTL
- TMR4sv_hls: Automated TMR for System Verilog

Rapid design optimization

- Power and area: roughly scale with number of model operations and parameters
- Performance: EMD mean and RMS are both important

Lower EMD is better

	Network Architecture			Relative Power & Area		Relative Performance			
Test feature	Geometry	# filter	kernel	stride	pooling	# params	# operations	EMD Mean	EMD RMS
Reference	4x4x3	8	3x3	1	none	1.00	1.00	1.00	1.00
4x4x3 -> 8x8	8x8	8	3x3	1	none	2.73	1.76*	0.64	0.41
max pooling	8x8	8	3x3	1	2x2	0.71	0.97*	0.59	0.33
3x3 -> 5x5 kernel	8x8	8	5x5	1	2x2	0.99	2.76	0.64	0.35
pooling -> stride=2	8x8	8	3x3	2	none	0.94	0.59	0.76	0.46
8 -> 10 filters	8x8	10	3x3	2	none	1.17	0.73	0.73	0.43
8 -> 6 filters	8x8	6	3x3	2	none	0.70	0.44	0.85	0.57

* zero operations removed

- Reference design: presented in Fall 2020**
- Final design: 8×8 geometry + 8 filters + 3×3 kernel + stride = 2
 - 50% power and 80% area of reference (from simulation)
 - 2× better performance (EMD RMS) than reference

^{**} https://indico.cern.ch/event/924283/contributions/4105329/attachments/2152250/3630590/encoder_asic_fastml2020.pdf https://www.eventclass.org/contxt_ieee2020/online-program/session?s=N-34#e280 https://www.eventclass.org/contxt_ieee2020/online-program/session?s=N-24#e189

Optimization of NN output

- Better to use many low-precision or fewer high-precision outputs?
- Compare EMD performance keeping power and area fixed.
- Conclusion : more lower-precision outputs is better
 - for both high- and low-bandwidth scenarios
 - for full range of module occupancy

ECON ASIC allows user to select any of 16×9 output bits for transmission

- Expect to use 16 × 3 (9) bits for low (high) occupancy zones.
- Corresponding precision used in QKeras quantization-aware training optimizes network for programmed output configuration.

Single event effect mitigation

Data path: Encoder & Convertor

- New data every 25ns
- Triplicate registers
- No auto-correction

Configuration: I²C secondary

- Long term weights storage
- Triplicate registers, logic, and clocks
- Auto-correction included

Design and verification methodology

Verification performed at each stage of design:

- Model training
- hls4ml
- Catapult HLS
- RTL
- Synthesis
- Place and route
- LVS and DRC

Design and verification methodology

Step	Type	Run Time	Iterations	Size	
Model generation	D	1s	50-100	1.1k lines of	
C Simulation	V	1s	20-100	C++	
HLS	D	30 min	2 100	40k lines of verilog	
RTL simulation	V	1 min	3–100		
Logic synthesis	D	6 hrs		750k gates	
Gate-level sim	V	30 min			
Place and route	D	50 hrs	6	780k gates	
Post-layout sim	V	1 hrs	0		
Post-layout parasitic sim	V	2 hrs			
SEE simulation	V	4 hrs			
Layout	D	20 min	1	7.6M	
LVS and DRC	V	1 hr	1	transistors	

Network optimization

Design optimization

Increasing time and complexity

Place and route

• Integrated design to avoid routing congestion from 14k bits of weights (programmable via I²C) connected from periphery.

Distributed i2c weights

19

Design Performance Metrics

Physics performance studies in progress → preliminary performance with non-optimized training comparable to traditional threshold algorithm.

Requirements				
Rate	40 MHz			
Total ionizing dose	200 Mrad			
High energy hadron flux	$1 \times 10^7 \text{cm}^2/\text{s}$			

Metric	Simulation	Target
Power	48 mW	<100 mW
Energy / inference	1.2 nJ	N/A
Area	2.88 mm ²	<4 mm ²
Gates	780k	N/A
Latency	50 ns	<100 ns

* EMD RMS 20

Summary

- Autoencoder neural network for on-detector data compression.
 - Low power, low latency, radiation tolerant, fully re-configurable
 - 65nm LP CMOS
- Established design and verification methodology based on hls4ml + Catapult HLS allows rapid progression from algorithm development through circuit implementation.
- Optimized network provides 2× better performance at ~50% power of reference network.

Acknowledgements

- ECON design team for inclusion in ECON ASIC: Davide Braga, Mike Hammer, Jim Hoff, Paul Rubinov, Alpana Shenai, Cristina Mantilla Suarez, Chinar Syal, Xiaoran Wang, Ralph Wickwire
- CMS HGCAL for simulated training images
 - Jean-Baptiste Sauvan for simulation development
 - Andre Davide for useful discussion on network optimization
- hls4ml developers: Javier Duarte, Phil Harris, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Sioni Summers https://fastmachinelearning.org/hls4ml/
- Mentor/Siemens Catapult HLS: Sandeep Garg and Anoop Saha
- Cadence Innovus and Incisive: Bruce Cauble and Brent Carlson

Additional material

Future: towards heterogenous intelligent system on-chip

OPTIMIZATION TECHNIQUES

OPTO-ELECTRONIC COMPUTE

- Analog Mixed-Signal Kernels
- In-memory compute e.g. with using memristors (non-Von Neumann approaches)
- Neuromorphic computing (event driven processing)
- Electronic-Photonic conversion
- Hybrid integration

Precision of weights and variables

- Diagram is example for $4 \times 4 \times 3$ reference network - same structure as final 8×8 network
- Weights are all 6b

For final 8×8 network:

- hidden layer neurons:
 - 8b fraction
 - sufficient integer bits to cover theoretical max value
- output neurons:
 - 9b total
 - 1b integer
 - covers maximum value from physics simulation

